Differential Equations

Example

1. A population model is given by $\frac{d P}{d t}=-10 P(P-1)(P-5)^{2}$. How does the fate of the population depend on the initial population?

Problems

2. True False Given a differential equation $\frac{d P}{d t}=f(P)$, if we cannot solve for P, then we have no hope of describing P 's behavior.
3. True False If the rate of change of x is proportional to x, then $\frac{d x}{d t}=a x+b$.
4. True False The doubling time of the differential equation $\frac{d N}{d t}=2 t$ depends on the initial value of N.
5. Write a differential equation describing the fact that the rate of change of the mass M of an object is proportional to its cube root.
6. If $\frac{d N}{d t}=(-\ln 2) N$, then does the doubling time or halving time make more sense? Find it.
7. A population model is given by $\frac{d P}{d t}=(P-1)(P-10)$. How does the fate of the population depend on the initial population?

Separable Equations

Example

8. Find the solution to $\frac{d y}{d t}=3 t^{2} y^{3}+e^{t} y^{3}$ with $y(0)=-1$.

Problems

9. True False We can always use the method of separable equations to solve $\frac{d y}{d t}=$ $f(y, t)$.
10. True False The differential equation $\frac{d y}{d t}=y+t$ is separable.
11. Find the solution to $\frac{d y}{d t}=t e^{y}$ with $y(0)=1$.
12. Find the solution to $\frac{d y}{d x}=6 x y^{2}$ with $y(1)=1 / 4$.
13. Find the solution to $\frac{d y}{d x}=\frac{3 x^{2}+2 x+1}{2 y+1}$ with $y(0)=1$.
14. Find the solution to $\frac{d r}{d t}=\frac{r^{2}}{t}$ with $r(1)=1$.
15. Find the solution to $\frac{d y}{d t}=2 y+3$ with $y(0)=0$.
16. Find the solution to $\frac{d x}{d y}=e^{x-y}$ with $x(0)=0$.
